

CSE7758 用户手册

Rev.1.0

通讯地址:深圳市南山区南海大道 1079 号花园城数码大厦 A 栋 9 楼

邮政编码:518067

公司电话:+(86 755)86169257 传真:+(86 755)86169057 公司网站:www.chipsea.com

历史修改记录

时间	记录	版本号
2012-12-24	换新 LOGO 初稿完成	1.0

目 录

	历史修改记录2
目	录3
图	形3
表	格4
主	要特点5
功	能概述6
原	埋框图 7
管	脚定义及功能描述8
性	能指标与实测结果9
芯	片工作原理13
模:	以输入15
电	原电压的检测
高	通滤波与失调电压影响19
功	率到频率转换20
输	出频率与输入信号的关系21
电	表应用时的参数设置22
F1	,F2,CF 输出时序24
启	动阈值电流26
极	限工作条件27
CS	E7758 封装28
	附录 1: 电表设计时的参数设置29
	图形
	At At Detect
	1.CSE7758 功能框图
	2. CSE7758 管脚图(顶视图)
	3.CSE7758 精度测试电路10
	4. CSE7758 测量精度(PGA=16)
	5.CSE7758 变频测试结果 1(G=16,PF=1)11
	6.CSE7758 变频测试结果 2(G=16,PF=0.8C)
	7.CSE7758 变频测试结果 3(G=16,PF=0.5L)
	8. CSE7758 基准电压随温度变化图12
	9. CSE7758 信号流图
	10. 电流通道接入方法一(电阻采样)
图	
图	
图	13. 电源电压检测信号波形18
	ala.

图 14.	通道失调对有功功率计算的影响图	19
图 15.	CSE7758 数字一频率转换框图	20
图 16.	F1, F2, CF 输出时序图	24
图 17.	CSE7758 封装轮廓图	28
	表 格	
表1:	CSE7758 管脚描述	8
表 2:	CSE7758 性能指标(环境温度 25°C, VDD/GND=5.0V)	9
表 3:	锰铜电阻(Rs)的参考取值(PGA 增益为 16 倍)	22
表 4:	F1, F2 输出频率与输入电流关系表	23
表 5:	CF/F1/F2 最大频率表	23
表 6:	CSE7758 时序参数表	24
表7:	CSE7758 极限工作条件	27

主要特点

- ▶ 精度高,满足 50/60Hz IEC687/1036 标准的准确度要求,在 1000: 1 的动态范围内,误差小于 0.1%:
- ▶ 数字脉冲输出,平均有功功率直接以数字脉冲输出,能直接驱动步进电机,实时有功功率以数 字脉冲形式输出,方便仪表校验;
- ▶ 内置晶振;
- ▶ 低阈值启动,启动电流小于 0.4%Ib;
- ▶ 片内集成防潜动功能;
- ▶ 宽模拟信号输入范围,可以输入峰峰值为±1V模拟信号;
- ▶ 片内集成电源电压检测功能, 当电源电压降低到 4V 时, 芯片复位, 停止工作;
- ▶ 片内集成高精度、高稳定 2.5V 基准电压源,绝对偏差小于±5%,温度系数小于±25ppm/℃;
- ▶ 低功耗,5V单电源工作,工作时功耗小于20mW;
- ▶ 宽工作温度范围,满足工业标准-40~85℃;
- ➤ SOP—8 封装

功能概述

CSE7758 是用于电能计量的高精度、高性能集成电路,它将平均有功功率以频率的形式直接输出,并且可以直接驱动步进电机。

平均有功功率由电流、电压乘积后经低通滤波得到,再经电压一频率转换,以频率的形式从F1、F2管脚输出,同时实时有功功率从CF管脚输出高频信号,用于仪表校验。

CSE7758 采用高精度 ADC 和 DSP 相结合的技术,片内集成高稳定的基准电压,对温度、纹波等外界干扰的敏感度很低,在很恶劣的外界条件下也能维持高的计量准确度及稳定性。

CSE7758 片内设计有抗混叠滤波器,最大程度地减小了片外滤波器的要求。

CSE7758 电流、电压通道电路一致,本身引起相位误差忽略不计。

片内有电源电压检测电路,当电源电压降低到 4V 时,芯片自动复位,检测电路的检测阈值设计有约 0.1V 的滞回电压区间,避免了电源电压上的起伏噪声而引起的误复位。

CSE7758 采用,5V CMOS 工艺设计,8-PIN,SOP 封装,有效降低成本、面积。

Rev.1.0 第6页, 共30页

原理框图

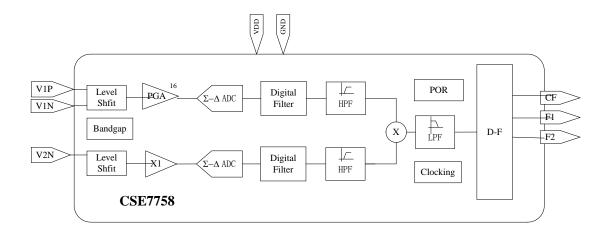


图1. CSE7758 功能框图

1.0 第7页, 共30页

管脚定义及功能描述

1.1 管脚排列

图2. CSE7758 管脚图 (顶视图)

1.2 管脚定义及功能描述

表 1: CSE7758 管脚描述

序号	符号	类型	功能描述
1	VDD	电源	+5V 电源
2	V1P	模拟输入	电流通道模拟信号输入,最大输入电压范围±1Vpp,V1P与V1N
3	V1N	模拟输入	构成差分信号
4	V2N	模拟输入	电压通道模拟信号输入,最大输入电压范围±1Vpp, GND与 V2N 构成差分信号
5	GND	模拟地	模拟地
6	CF	数字输出	校正频率输出,该输出包含有瞬时有功功率的信息,CF 与 F1, F2 的频率关系,参考后文
7	F2	数字输出	平均有功功率的频率形式输出,可直接驱动两相步进电机
8	F1	数字输出	平均有功功率的频率形式输出,可直接驱动两相步进电机

.1.0 第8页, 共30页

性能指标与实测结果

1.3 CSE7758 性能指标

表 2: CSE7758 性能指标(环境温度 25°C, VDD/GND=5.0V)

参数名	符号	最小	典型	最大	单位)
精度指标			1			
测量误差				0. 1	%	电流通道 PGA 增益为 16, 电压通道输入为交流±500mV, 电流通道 PGA 输出信号为 1mV~1V(1000:1 动态范围)
通道间相位误差	ΔΡ	-0.005		0.005	度	电流通道 PGA 增益为 16, 频率为 100Hz 通道间相位匹配误差与电流电压信号 的相位无关
直流增益误差	ΔG_{DC}	-2		2	%	不考虑参考电压的误差
电源电压抑制比	PSRR+	60			dB	
模拟输入端口指标	示					
最大输入范围	VI_{max}	-1.0		+1.0	V	V1P, V1N, V2P, V2N (GND) 管脚输入 电压范围
直流输入电阻	RI_{DC}	1000			KΩ	
片内参考电压源误 差	∆VREF	-100		+100	mV	
主时钟频率	F _{MCLK}		3. 5795 45		MHz	使用内置时钟
数字端口接口电3	P.					
输入高电平电压	VIH	2.4			V	
输入低电平电压	VIL			0.8	V	
输出高电平电压	VOH	4.0			V	
输出低电平电压	VOL			0.5	V	
输出驱动电流1	I01	10			mA	F1、F2 管脚
输出驱动电流 2	102	5			mA	CF 管脚
电源与功耗指标						
电源电压	VDD	4. 75	5. 00	5. 25	V	
电路功耗	Р		15	20	mW	

第9页,共30页

1.4 CSE7758 实际测试结果

1.4.1 测量准确度

1.4.1.1 测试电路

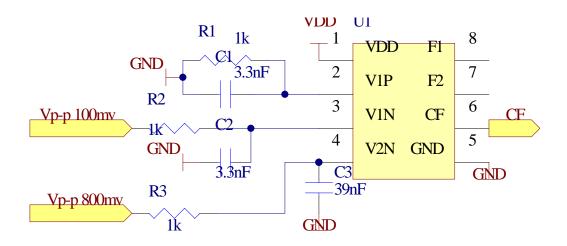


图3. CSE7758 精度测试电路

1.4.1.2 增益变化测试结果

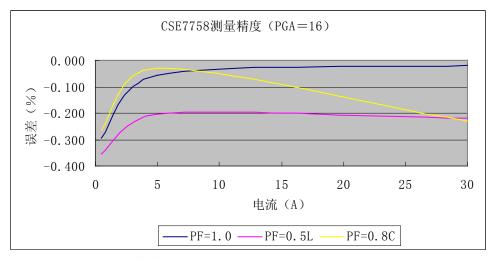


图4. CSE7758 测量精度 (PGA=16)

1.4.1.3 频率变化测试结果

第10页,共30页

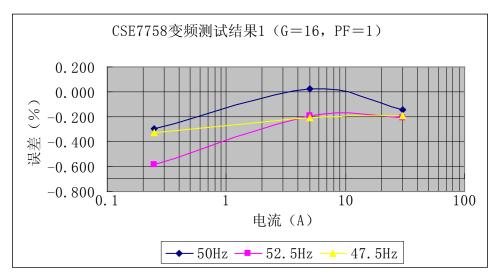


图5. CSE7758 变频测试结果 1 (G=16, PF=1)

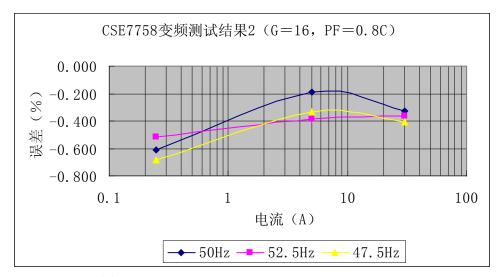


图6. CSE7758 变频测试结果 2 (G=16, PF=0.8C)

Rev .1 .0 第11页,共30页

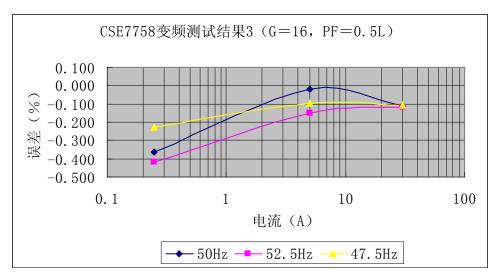


图7. CSE7758 变频测试结果 3 (G=16, PF=0.5L)

1.4.1.4 潜动测试

根据 IEC1036 标准的规定, 电表的启动电流必须不大于 0.4%Ib。根据不同的参比电流, CSE7758 的启动电流测试结果:

- 1) 当 Ib≤10A 时,启动电流 Istart≤8mA,(假定线电压为 220V)
- 2) 当 Ib≤20A 时, 启动电流 Istart≤16mA, (假定线电压为 220V)

1.4.2 参考电压温度特性

在-45℃ \sim 85℃范围内,CSE7758 的温度系数小于 100ppm/℃。结果如下图:

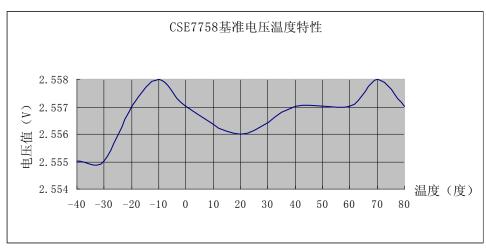


图8. CSE7758 基准电压随温度变化图

第12页,共30页

芯片工作原理

1.5 信号流

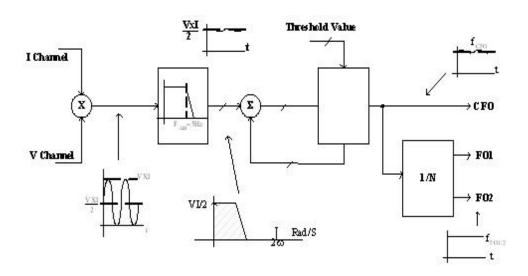


图9. CSE7758 信号流图

CSE7758 将电压通道、电流通道的信号经过 Σ - Δ ADC 转换并经过高通滤波,然后相乘,相乘的信号再经过低通滤波、数字到频率转换后,通过 CF、F1、F2 管脚输出数字脉冲,其信号流框图如上图所示。

设 $I(t) = I \times \cos(\omega \cdot t)$, $V(t) = U \times \cos(\omega \cdot t)$, 则功率为:

$$P(t) = I(t) \cdot V(t) = \frac{1}{2} \times I \times U \times (1 + \cos(2 \cdot \omega \cdot t))$$

该 P(t) 经过低通滤波后,即为有功功率,然后再经数字一频率转换后直接输出。

1.6 功率因子影响

以上是基于电压、电流同步时的计算,当电压、电流有相位差时,同样有效。假设相差 60 度,即 $I(t) = I \times \cos(\omega \cdot t)$, $V(t) = U \times \cos(\omega \cdot t + \frac{\pi}{3})$,则功率

$$P(t) = I(t) \cdot V(t) = \frac{1}{2} \times I \times U \times (\frac{1}{2} + \cos(2 \cdot \omega \cdot t))$$

该功率信号经过低通滤波后,同样得到正确的有功功率值 $P_{\text{active}} = \frac{1}{2} \times I \times U \times \frac{1}{2}$

1.7 非正弦电压电流输入

本芯片的有功功率计算,同样适合非正弦输入的有功功率计算,根据傅立叶分解,设定电压为:

$$V(t) = V_0 + \sum_{N \neq 0}^{\infty} V_N \times \sin(N \cdot \omega \cdot t + \alpha \cdot N)$$

其中: V(t) ——为瞬时电压值

 V_0 ——电压的直流分量

 V_N ——为 N 次电压谐波幅度

 $\alpha \cdot N$ ——为 N 次电压谐波的相位

电流为:

$$I(t) = I_0 + \sum_{N \neq 0}^{\infty} I_N \times \sin(N \cdot \omega \cdot t + \beta \cdot N)$$

其中: I(t) ——为瞬时电流值

 I_0 ——电流的直流分量

 I_N ——为 N 次电流谐波幅度

 $\beta \cdot N$ ——为 N 次电流谐波的相位

有功功率为基波有功功率与所有谐波有功功率的和,即

$$P = P_1 + \sum_{N=2}^{\infty} P_N$$

其中:

$$P_1 = V_1 \times I_1 \times \cos \theta_1 \qquad (\theta_1 = \alpha_1 - \beta_1)$$

$$P_N = V_N \times I_N \times \cos \theta_N \quad (\theta_N = \alpha_N - \beta_N)$$

由上式可知: 电压、电流中包含的各次谐波功率及有功功率都已经计算在内, 因此芯片对非正弦输入的有功功率计算也正确。

模拟输入

1.8 电流通道

电流通过电流传感器转换为电压从电流通道(即 CSE7758 的第 1 通道)V1P、V1N(即第 2、3 管脚)管脚输入芯片内部进行功率计算,其为全差分输入,差分峰峰值最大可达 \pm 1V,共模电压可以达 \pm 0.2V。

1.8.1 电压输入范围

在进行电能表设计时,为有效防止电流通道和电压通道的信号过载,电流通道 PGA=16, 应使输入信号的最大峰峰值不超过最大输入范围的一半(即±62.5mV)

1.8.2 电流传感信号接入方法

方法一: 电阻采样

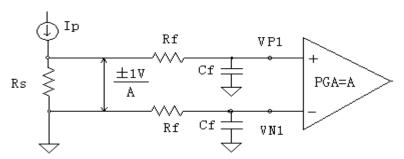


图10. 电流通道接入方法一(电阻采样)

图中: Rs 为电流采样电阻,一般为 300~500uΩ的锰铜电阻, Rf 与 Cf 组成一阶低通滤波器,用以滤除高频干扰信号,增强电表的抗高频干扰能力,同时,也可防止过大的高频信号导致模拟信号输入过载。

低通滤波器的-3dB 转折频率为: $1/(2 \times \pi \times R_f \times Cf)$, 设计时应使转折频率小于 100KHz(Rf 可取值 $100 \Omega \sim 1000 \Omega$,Cf 可取值 $1 \text{nF} \sim 33 \text{nF}$)

注: RC 滤波器的转折频率越低,对 Rf、Cf 的精度要求越高,否则会带来通道间的相位匹配误差,影响功率测量准确度。当 RC 滤波器转折频率小于 10KHz 时,Rf 的精度要保证在 1%以内,Cf 的精度要在 10%以内。当 RC 滤波器转折频率等于 100KHz 时,Rf 的精度要保证在 10%以内,Cf 的精度要在 10%以内。因此**电表设计时,建议尽量采用高精度电阻、电容。**

方法二: 电流互感器 (CT)

第 15 页,共 30 页

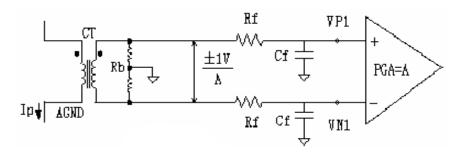


图11. 电流通道接入方法二(电流互感 CT)

使用电流互感器采样电流时注意 CT 变比与负载电阻 Rb 的选择,必须保证在最大负载条件下,电流通道(即通道1)的差分峰峰电压不超过1/16(16为 PGA 的增益)。

1.9 电压通道

电压通道即 CSE7758 的第 2 通道,V2N、(GND) V2P (为第 4、5 管脚),计量功率时从电压通道 采样输入电网电压。

1.9.1 信号输入范围

CSE7758 电压通道的最大输入差分信号范围为±1V,电表设计时,为有效防止信号过载,并为电表的校正留下空间,应使输入信号的最大峰峰不超过最大输入范围的一半(即±500mV)。

1.9.2 信号接入方法

方法一: 电阻分压

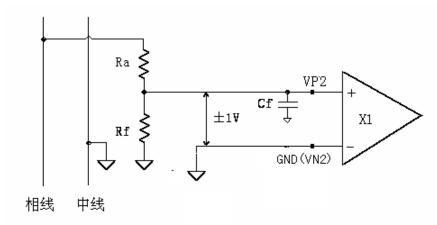


图12. 电压通道接入方法一(电阻分压)

上图中,Ra 为可调电阻网络,可方便电表输出频率的校正。图中所示的电压值为最大值。Rf,Cf 的取值与电流通道相同。

Rev.1.0 第17页, 共30页

电源电压的检测

CSE7758 片内设计有电源电压检测电路, 当电源电压下降到 0.8×VDD 时, 芯片会自动复位。检 测电路的检测阈值设计有 0.1V 的滞回电压区间,避免了电源电压上的起伏噪声而引起的反复复位。

电源电压检测示意图如下:

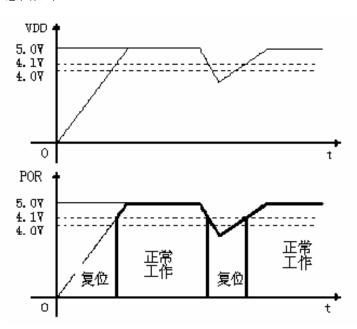


图13. 电源电压检测信号波形

第18页,共30页

高通滤波与失调电压影响

假设电压、电流通道分别有失调 Vos、Ios,则在输入信号进行有功功率计算时出现误差,具体如 下公式、下图所示:

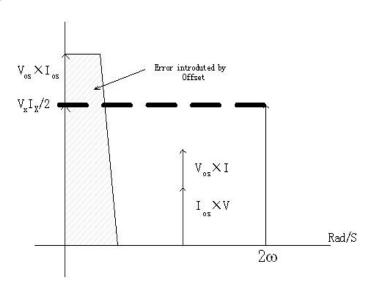


图14. 通道失调对有功功率计算的影响图

因此必须对电压、电流通道的输入数据进行高通处理,消除失调电压、电流对有功功率计算的 影响, CSE7758 的通道差异很小, 通道相位误差远小于 0.05 度, 保证在低功率因子时对功率计算的 准确。

第19页,共30页

功率到频率转换

CSE7758 的两个通道信号结果相乘、经过低通滤波后,仍然包含经衰减后的谐波信号,特别是 2 次谐波。CSE7758 的低通滤波转折频率约为 5Hz,对于 100Hz 的信号衰减约 27dB,相对 0.1%的精度要求,显然不够。

CSE7758设计为直接输出数字脉冲驱动马达,因此需要将功率数值转换为对应频率的周期信号,用于周期驱动计数器,进行有功功率计量。

考虑以上要求,选择合适的数字-频率转换,既对计量值中的瞬时信息进行有效衰减,同时输出准确周期信号。

CSE7758 的数字-频率转换采用独特的积分技术,将功率数值的瞬时信息平均,并且可以方便设置输出脉冲的阈值,方便设计重用。

其功能框图如下:

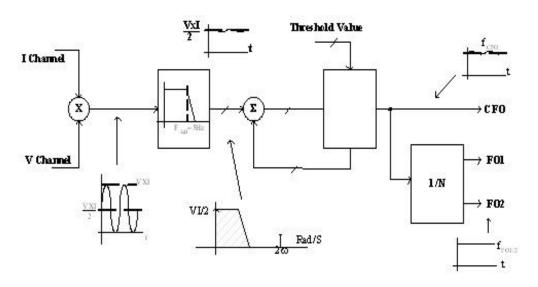


图15. CSE7758 数字一频率转换框图

CF 是高频实时有功功率频率输出,方便在生产电能表时校表,F1、F2 以非常低的频率输出,有效滤除高频成分,实现几乎无纹波输出,准确驱动计数器计数。

Rev.1.0 第20页, 共30页

输出频率与输入信号的关系

1.10 F1、F2 输出频率与输入信号的关系

F1、F2 输出频率与电流、电压通道输入信号的关系如下:

$$\mathbf{F}_{O} = \frac{8.06 \times V_{1,rms} \times V_{2,rms} \times \mathbf{A} \times F_{b}}{V_{ref}^{2}}$$

其中:

F₀ ──F1、F2 输出频率

 $V_{\mathrm{l},rms}$ ——电流通道输入信号的有效值(RMS), $V_{\mathrm{l},rms}=\left(V1P-V1N\right)_{rms}$

 $V_{2,rms}$ ——电压通道输入信号的有效值(RMS), $V_{2,rms} = (V2P - V2N)_{rms}$

A ——电流通道的 PGA 增益, A=16

F_b ——参考频率, Fb=6.8Hz

CF 输出频率与 F1、F2 输出频率的关系:

 $CF=16 \times F1$, F2

电表应用时的参数设置

1.11 锰铜采样电阻的选择

针对不同的参比电流 Ib (basic current),应分别选用不同大小的锰铜采样电阻 (Rs),锰铜采样电阻的选择应考虑以下几种因素:

- 1) 功耗, IEC1036 标准规定电表的总功耗应不超过 2W。
- 2) 精度,对 CSE7758 而言,电流通道的输入信号越大,测量准确度越高,而 CSE7758 能够保证在电流通道的 PGA 输出在 1mV~0.6V 的范围内(即 1000:1 的动态范围),输出频率都能达到 0.1%的准确度。由于最终电表的测量准确度不仅与 CSE7758 相关,还与片外的器件精度有关,所以,在功耗允许的情况下,建议尽量使电流通道的输入信号落在 1000:1 动态范围的偏上部分,以便在轻载的情况下,也能保证测量准确度。
- 3) 散热,锰铜采样电阻选取得过大,会导致该电阻上的功耗过大,会使电表的工作温度过高,影响测量准确度。

采样电阻的取值应均衡考虑以上因素,下表列出不同参比电流下,锰铜电阻(Rs)的参考取值(PGA增益为16):

• • • • • • • • • • • • • • • • • • • •		
参比电流(Ib, A)	最大电流(Imax,A)	采样电阻值(Rs , $u\Omega$)
2.5	10	1000~2000
5	20	500~1000
10	40	350~500
_	60	325
20	80	200
	>100A	125~175
注: Imax 为最大电流	,一般 Imax≤6Ib	

表 3: 锰铜电阻 (Rs) 的参考取值 (PGA 增益为 16 倍)

输入信号越小,测量准确度便越差,虽然 CSE7758 能够保证 PGA 输出电压在 1000: 1 的动态 范围内达到 0.1%的精度,但测量准确度还与片外的器件精度相关,所以在轻载情况下,适当增大锰铜采样电阻,使输入信号的幅度增加,可以更好地保证测量准确度。

1.12 输出频率与量程的关系

以 100 imp/KWh 的计数器为例, 当功率为 1KWh 时, F1、F2 的输出频率为:

100/3600 = 0.0278Hz

下表列出了不同大小的电流, 计数器为 100 imp/KWh 的电表对应的 F1、F2 输出频率(假设线电压为 220V):

第 22 页,共 30 页

农 4: Γ1, Γ2 制山					
电流 (A)	F1,F2 频率(Hz)				
10	0.061				
20	0.122				
40	0.244				
60	0.366				
80	0.488				
100	0.61				
120	0.732				

表 4: F1, F2 输出频率与输入电流关系表

1.13 CF, F1, F2 最大输出频率

电表设计时,应使电流通道和电压通道的输入信号不超过最大值的一半,这样可以使电流、电压通道的信号在极端情况下不至于过载,对电压通道而言,也能留下校正的空间。

下表给出了 CSE7758 在对应不同电流范围所能输出的最大频率,供电表设计者参考。(电压通道为半满幅交流输入,即输入信号峰峰值为±500mVpp)

			·			
Imax	D _a (vO)	增	PGA 输出	Fb	F1, F2 最大输出频	CF 输出最高频
(A)	Rs(uΩ)	益	(mVpp)	(Hz)	率 (Hz)	率 (Hz)
10	1000	16	±226	6.8	0.495	7.92
20	500	16	±226	6.8	0.495	7.92
40	350	16	±317	6.8	0.695	11.12
60	325	16	±441	6.8	0.967	15.472
80	200	16	±361	6.8	0.791	12.656
≥100	125	16	_	6.8	0.620	9.92

表 5: CF/F1/F2 最大频率表

从上表中可以看出,在最大电流较小时,PGA的输出电压较小,距离半满幅(±500mVpp)的距离较远,此时,可以适当增加Rs电阻,以便更好地保证轻载时的测量准确度。

Rev.1.0 第23页, 共30页

F1, F2, CF输出时序

输出时序图如下:

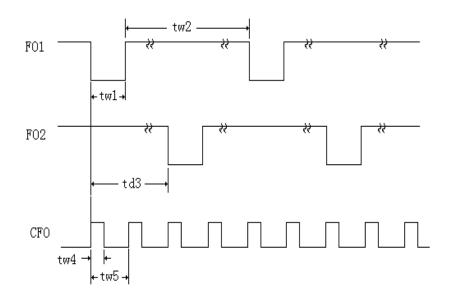


图16. F1, F2, CF 输出时序图

时序参数见下表:

表 6: CSE7758 时序参数表

参数 符号 最小 典型 最大 单位								
	当 F1、F2 的输出频率小于 1.81Hz(周期大于 552ms)时							
F1, F2 脉宽	tw1	275			ms			
F1, F2 周期	tw2	Т			S			
F2 与 F1 的延时	td3	T/2			S			
当 F1、F2 的输出频率大于 1.8	- 81Hz(周期小	于 552ms)) 时					
F1, F2 脉宽	tw1	T/2			S			
F1, F2 周期	tw2	Т			S			
F2 与 F1 的延时	td3	T/2			S			
当 CF 的输出频率小于 5.56Hz	(周期大于1	80ms) 时						
CF 脉宽	tw4	90			ms			
CF 周期	tw5	TCF			S			
当 CF 的输出频率大于 5.56Hz (周期小于 180ms) 时								
CF 脉宽	tw4	TCF/2			S			
CF 周期	tw5	TCF			S			
CF 频率为高频模式					·			

Rev.1.0 第24页, 共30页

参数	符号	最小	典型	最大	单位
CF 脉宽	tw4	18			us
CF 周期	tw5	TCF			S

说明:

TCF: CF 输出脉冲的周期

T: F1, F2 输出脉冲的周期

测试条件:

VDD=5V±5%, 时钟(内置)为3.579MHz,温度范围为-40~85℃

Rev.1.0 第25页, 共30页

启动阈值电流

根据 IEC1036 标准的规定, 电表的启动电流必须不大于 0.4%Ib。根据不同的参比电流, CSE7758内部分别设计有不同的启动电流:

- 1) 当 Ib≤10A 时, 启动电流 Istart≤8mA, (假定线电压为 220V)
- 2) 当 Ib≤20A 时,启动电流 Istart≤16mA,(假定线电压为 220V)

Rev.1.0 第26页, 共30页

极限工作条件

表 7: CSE7758 极限工作条件

参数	最小	典型	最大	单位
VDD 相对于 GND 电压	-0.4		7. 0	V
V1N, V1P, V2N 端口相对于 GND 电压	-1		1	V
其余端口相对于 VDD 电压	-0.4		VDD+0.4	V
存储温度范围	-65		150	$^{\circ}\!\mathbb{C}$
最大工作温度范围	-40		85	$^{\circ}\!\mathbb{C}$
结温	_		150	$^{\circ}\!\mathbb{C}$
焊接温度(10秒)		260		$^{\circ}\!\mathbb{C}$
ESD (HBM)	3. 5	4		KV
管脚 Latch-up 电流	150	200		mA

第 27 页,共 30 页

CSE7758 封装

SOP-8 封装 单位: 英寸(毫米)

标注 尺寸	最小 (mm)	最大 (mm)	尺寸 标注	最小 (mm)	最大 (mm)
Α	4.95	5.15	ca	0.05	0.20
A1	0.37	0.47	C4	0.20	TYP
A2	1.27	TYP	D	1.05TYP	
A3	0.41	TYP	D1	0.40	0.60
В	5.80	6.20	R1	0.07	TYP
B1	3.80	4.00	R2	0.07	TYP
B2	5.0	ΤΥΡ	01	17°TYP	
С	1.30	1.50	02	13°TYP	
C1	0.55	0.65	83	4°TYP	
C2	0.55	0.65	84	12°	TYP

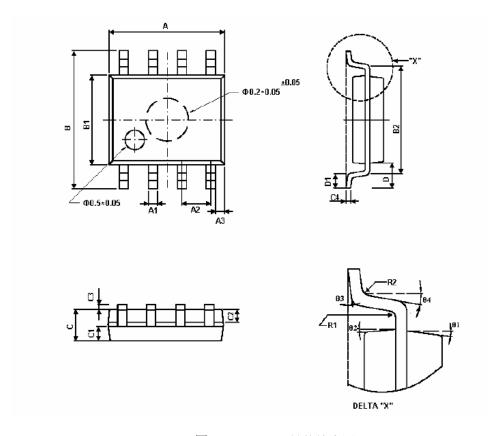


图17. CSE7758 封装轮廓图

Rev.1.0 第28页, 共30页

附录 1: 电表设计时的参数设置

举例说明电表设计时的参数设置。

假设相关输入参数如下:

线电压: 220V

参比电流: 10A

最大电流: 40A

电表计数器: 200imp/KWh

电表常数: 3200imp/KWh

锰铜采样电阻: 350uΩ

按照以下步骤设计:

1.14 第 1 步: 首先计算电流通道最大输入电压 V1Pp

$$V_{1 \text{ rms}} = 40 \text{A} \times 350 \text{u}\Omega = 14 \text{mV}$$

$$V1Pp = 1.414 \times V_{1,rms} = 19.8 \text{mV}$$

PGA 的输出电压为: 19.8×16=317Mv, 由表 8 可查出, Fb=6.8Hz

1.15 第 2 步: 计算最大输出频率

 $F1/2_{max} = 40A \times 220V \times (200 \text{imp/KWh}) / 3600 000 = 0.4888888 \text{Hz}$

CF=0. $4888888 \times 16=7$. 8222208Hz

1.16 第 3 步: 计算电压通道的输入电压

根据输出频率表达式:
$$F_o = \frac{8.06 \times V_{1,rms} \times V_{2,rms} \times A \times F_b}{V_{rof}^2}$$

得到: 0.4888888Hz=8.06×14mV× $V_{2,rms}$ ×16×6.8Hz/2.5 2

计算出 $V_{2,rms}=248.884$ mV,因此得到V2pp为

 $\text{V2pp}\!=\!1.\,414\!\times\! V_{2,rms}=\!351.\,922\text{mV}$

所以,只要调整电压通道的校正电阻网络,使得电压通道的输入电压 V2pp 为 351.922mV 即可。

